Boosting Ensemble
- AdaBoost
- Gradient Boosting
- XGBoost
- [objective] reg:squarederror, reg:squaredlogerror, reg:logistic, reg:pseudohubererror, reg:absoluteerror, binary:logistic, binary:logitraw, binary:hinge, count:poisson, survival:cox, survival:aft, multi:softmax, multi:softprob, rank:pairwise, rank:ndcg, rank:map, reg:gamma, reg:tweedie
- LightGBM
- CatBoost
- NGBoost
Overview
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
#import xgboost as xgb #import lightgbm as lgb #import catboost as cb #import ngboost as ngb
# classification
X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
classifier = ensemble.AdaBoostClassifier(estimator=tree.DecisionTreeClassifier())
classifier = ensemble.GradientBoostingClassifier()
classifier.fit(X, y)
classifier.predict(X)
classifier.predict_proba(X)
# regression
X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
regressor = ensemble.AdaBoostRegressor(estimator=tree.DecisionTreeRegressor())
regressor = ensemble.GradientBoostingRegressor()
regressor.fit(X, y)
regressor.predict(X)
Task: Classification
Validation: AdaBoostingClassifier
더보기
#
Validation: GradientBoostingClassifier: binary classification
더보기
# https://scikit-learn.org/stable/modules/model_evaluation.html
import joblib
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.preprocessing import PowerTransformer, QuantileTransformer, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.model_selection import cross_val_score, cross_validate, GridSearchCV, StratifiedKFold
from sklearn.ensemble import GradientBoostingClassifier
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, weights=[0.6, 0.4], flip_y=0)
#binary_class_scoring = ['accuracy', 'balanced_accuracy', 'recall', 'average_precision', 'precision', 'f1', 'jaccard', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo']
#multi_class_scoring = ['accuracy', 'balanced_accuracy', 'recall_micro', 'recall_macro', 'recall_weighted', 'precision_micro', 'precision_macro', 'precision_weighted', 'f1_micro', 'f1_macro', 'f1_weighted', 'jaccard_micro', 'jaccard_macro', 'jaccard_weighted', 'roc_auc_ovr_weighted', 'roc_auc_ovo_weighted']
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=None) # cross validation & randomness control
classifier = make_pipeline(PowerTransformer(method='yeo-johnson', standardize=True), Normalizer(), GradientBoostingClassifier())
classifier = GridSearchCV(
estimator=classifier, cv=cv,
scoring=['accuracy', 'recall', 'precision', 'f1'][1],
param_grid={
'powertransformer__standardize':[True, False],
'gradientboostingclassifier__loss':['log_loss', 'deviance', 'exponential'][0:1],
'gradientboostingclassifier__learning_rate':[.1, .2],
'gradientboostingclassifier__criterion':['friedman_mse', 'squared_error'][0:1],
'gradientboostingclassifier__n_estimators':[10, 30, 50],
'gradientboostingclassifier__subsample':[.7,.8, 1],
'gradientboostingclassifier__min_samples_split':[2],
'gradientboostingclassifier__min_impurity_decrease':[0.0],
# 'gradientboostingclassifier__min_samples_leaf':[1],
# 'gradientboostingclassifier__min_weight_fraction_leaf':[0.0],
# 'gradientboostingclassifier__max_depth':[3],
# 'gradientboostingclassifier__init':[None],
# 'gradientboostingclassifier__random_state':[None],
# 'gradientboostingclassifier__max_features':[None],
# 'gradientboostingclassifier__max_leaf_nodes':[None],
# 'gradientboostingclassifier__warm_start':[False],
# 'gradientboostingclassifier__validation_fraction':[0.1],
# 'gradientboostingclassifier__n_iter_no_change':[None],
# 'gradientboostingclassifier__tol':[0.0001],
# 'gradientboostingclassifier__ccp_alpha':[0.0],
},
return_train_score=True,
)
classifier.fit(X, y) ; joblib.dump(classifier, 'classifier.joblib')
classifier = joblib.load('classifier.joblib')
classifier.cv_results_
# Evaluation
train_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('train_score') , classifier.cv_results_.items())))
train_scores = train_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=train_scores[0].to_dict())
train_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('train_score', column.replace('_train_score', '')), train_scores.columns))
test_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('test_score') , classifier.cv_results_.items())))
test_scores = test_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=test_scores[0].to_dict())
test_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('test_score', column.replace('_test_score', '')), test_scores.columns))
time_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('time') , classifier.cv_results_.items())))
time_scores = time_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=time_scores[0].to_dict())
time_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('time', column.replace('_time', '')), time_scores.columns))
scores = pd.concat([train_scores, test_scores, time_scores], axis=1)
scores.index = pd.MultiIndex.from_frame(pd.DataFrame(classifier.cv_results_['params']))
scores.sort_values(('test_score', 'rank'))
Preprocessing effect: GradientBoostingClassifier: binary classification
더보기
import numpy as np
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.preprocessing import PowerTransformer, QuantileTransformer, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler
from sklearn.preprocessing import OneHotEncoder, Binarizer, KBinsDiscretizer, PolynomialFeatures, SplineTransformer
def scoring(classifier, X, y, preprocessor_name, task_type, random_state=None):
from sklearn.model_selection import cross_validate, RepeatedStratifiedKFold, RepeatedKFold
if task_type == 'binary':
scoring = ['accuracy', 'balanced_accuracy', 'recall', 'average_precision', 'precision', 'f1', 'jaccard', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo']
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=random_state) # StratifiedKFold(n_splits=5, shuffle=False, random_state=None) # cross validation & randomness control
elif task_type == 'multi':
scoring = ['accuracy', 'balanced_accuracy', 'recall_micro', 'recall_macro', 'recall_weighted', 'precision_micro', 'precision_macro', 'precision_weighted', 'f1_micro', 'f1_macro', 'f1_weighted', 'jaccard_micro', 'jaccard_macro', 'jaccard_weighted', 'roc_auc_ovr_weighted', 'roc_auc_ovo_weighted']
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=random_state) # StratifiedKFold(n_splits=5, shuffle=False, random_state=None) # cross validation & randomness control
elif task_type == 'reg':
scoring = ['r2', 'explained_variance', 'max_error', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error', 'neg_median_absolute_error', 'neg_mean_absolute_percentage_error']
cv = RepeatedKFold(n_splits=5, n_repeats=3, random_state=random_state) # KFold(n_splits=5, shuffle=False, random_state=None)
scores = pd.DataFrame(cross_validate(classifier, X, y, cv=cv, scoring=scoring, return_train_score=True)).mean()
scores.name = preprocessor_name
return scores
def scoring_summary(scores):
# summary
train_scores = scores[list(filter(lambda column: column.startswith('train'), scores.columns))]
test_scores = scores[list(filter(lambda column: column.startswith('test'), scores.columns))]
time_scores = scores[list(filter(lambda column: column.endswith('time'), scores.columns))]
train_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('train', '_'.join(column.split('_')[1:])), train_scores.columns))
test_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('test', '_'.join(column.split('_')[1:])), test_scores.columns))
time_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('time', '_'.join(column.split('_')[:-1])), time_scores.columns))
scores = pd.concat([train_scores, test_scores, time_scores], axis=1).swaplevel(0,1,axis=1)
return scores
random_state = None; task_type = 'binary'
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, weights=[0.9, 0.1], flip_y=0, random_state=random_state)
scores = list()
# transform of measure
params = dict(loss='log_loss', learning_rate=0.1, n_estimators=30, subsample=1.0, criterion='friedman_mse', random_state=random_state)
scores.append(scoring(GradientBoostingClassifier(**params), X, y, preprocessor_name='baseline', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), PCA(n_components=None).fit_transform(X), y, preprocessor_name='PCA', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), FactorAnalysis(n_components=None, rotation='varimax').fit_transform(X), y, preprocessor_name='FactorAnalysis', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), QuantileTransformer(output_distribution='normal').fit_transform(X), y, preprocessor_name='QuantileTransformer', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), PowerTransformer(method='yeo-johnson', standardize=True).fit_transform(X), y, preprocessor_name='PowerTransform', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), Normalizer().fit_transform(X), y, preprocessor_name='Normalizer', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), StandardScaler().fit_transform(X), y, preprocessor_name='StandardScaler', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), MinMaxScaler().fit_transform(X), y, preprocessor_name='MinMaxScaler', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), MaxAbsScaler().fit_transform(X), y, preprocessor_name='MaxAbsScaler', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), RobustScaler().fit_transform(X), y, preprocessor_name='RobustScaler', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), KBinsDiscretizer(n_bins=10, encode='ordinal').fit_transform(X), y, preprocessor_name='KBinsDiscretizer', task_type=task_type, random_state=random_state))
# transform of sigma-algebra
scores.append(scoring(GradientBoostingClassifier(**params), Binarizer(threshold=0).fit_transform(X), y, preprocessor_name='Binarizer', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), KBinsDiscretizer(n_bins=10, encode='onehot').fit_transform(X), y, preprocessor_name='OneHotEncoder', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), PolynomialFeatures(degree=2, interaction_only=False, include_bias=True).fit_transform(X), y, preprocessor_name='PolynomialFeatures', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), SplineTransformer(degree=2, n_knots=3).fit_transform(X), y, preprocessor_name='SplineTransformer', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), PolynomialFeatures(degree=2, interaction_only=False, include_bias=True).fit_transform(SplineTransformer(degree=3, n_knots=5).fit_transform(X)), y, preprocessor_name='SplineTransformer&PolynomialFeatures', task_type=task_type, random_state=random_state))
scores.append(scoring(GradientBoostingClassifier(**params), SplineTransformer(degree=3, n_knots=5).fit_transform(PolynomialFeatures(degree=2, interaction_only=False, include_bias=True).fit_transform(X)), y, preprocessor_name='PolynomialFeatures&PolynomialFeatures', task_type=task_type, random_state=random_state))
scores = pd.concat(scores, axis=1).T
# summary
scores = scoring_summary(scores)
scores[['accuracy', 'recall', 'precision', 'f1']]
Validation: XGBClassifier: binary classification
더보기
# https://scikit-learn.org/stable/modules/model_evaluation.html
import joblib
import pandas as pd
from sklearn.datasets import make_classification
from sklearn.preprocessing import PowerTransformer, QuantileTransformer, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.model_selection import cross_val_score, cross_validate, GridSearchCV, StratifiedKFold
from xgboost import XGBClassifier
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, weights=[0.6, 0.4], flip_y=0)
#binary_class_scoring = ['accuracy', 'balanced_accuracy', 'recall', 'average_precision', 'precision', 'f1', 'jaccard', 'roc_auc', 'roc_auc_ovr', 'roc_auc_ovo']
#multi_class_scoring = ['accuracy', 'balanced_accuracy', 'recall_micro', 'recall_macro', 'recall_weighted', 'precision_micro', 'precision_macro', 'precision_weighted', 'f1_micro', 'f1_macro', 'f1_weighted', 'jaccard_micro', 'jaccard_macro', 'jaccard_weighted', 'roc_auc_ovr_weighted', 'roc_auc_ovo_weighted']
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=None) # cross validation & randomness control
classifier = make_pipeline(PowerTransformer(method='yeo-johnson', standardize=True), Normalizer(), XGBClassifier(objective='binary:logistic'))
classifier = GridSearchCV(
estimator=classifier, cv=cv,
scoring=['accuracy', 'recall', 'precision', 'f1'][1],
param_grid={
'powertransformer__standardize':[True, False],
'normalizer__norm':['l1', 'l2', 'max'],
'xgbclassifier__n_estimators': [10, 50],
# 'xgbclassifier__grow_policy': ['depthwise', 'lossguide'],
# 'xgbclassifier__reg_alpha': [0, .1],
# 'xgbclassifier__reg_lambda': [0, .1],
},
return_train_score=True,
)
classifier.fit(X, y) ; joblib.dump(classifier, 'classifier.joblib')
classifier = joblib.load('classifier.joblib')
classifier.cv_results_
# Evaluation
train_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('train_score') , classifier.cv_results_.items())))
train_scores = train_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=train_scores[0].to_dict())
train_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('train_score', column.replace('_train_score', '')), train_scores.columns))
test_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('test_score') , classifier.cv_results_.items())))
test_scores = test_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=test_scores[0].to_dict())
test_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('test_score', column.replace('_test_score', '')), test_scores.columns))
time_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('time') , classifier.cv_results_.items())))
time_scores = time_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=time_scores[0].to_dict())
time_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('time', column.replace('_time', '')), time_scores.columns))
scores = pd.concat([train_scores, test_scores, time_scores], axis=1)
scores.index = pd.MultiIndex.from_frame(pd.DataFrame(classifier.cv_results_['params']))
scores.sort_values(('test_score', 'rank'))
Task: Regression
Validation: AdaBoostingRegressor
더보기
#
Validation: GradientBoostingRegressor
더보기
# https://scikit-learn.org/stable/modules/model_evaluation.html
import joblib
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.preprocessing import PowerTransformer, QuantileTransformer, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.model_selection import cross_val_score, cross_validate, GridSearchCV, KFold
from sklearn.ensemble import GradientBoostingRegressor
X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
cv = KFold(n_splits=10, shuffle=False, random_state=None)
regressor = make_pipeline(PowerTransformer(method='yeo-johnson', standardize=True), Normalizer(), GradientBoostingRegressor())
regressor = GridSearchCV(
estimator=regressor, cv=cv,
scoring=['r2', 'explained_variance', 'max_error', 'neg_mean_squared_error', 'neg_mean_absolute_error', 'neg_root_mean_squared_error', 'neg_median_absolute_error', 'neg_mean_absolute_percentage_error'][1],
param_grid={
'gradientboostingregressor__loss':['squared_error', 'absolute_error', 'huber', 'quantile'],
'gradientboostingregressor__learning_rate':[.1, .2],
# 'gradientboostingregressor__n_estimators':[10, 50, 100],
'gradientboostingregressor__subsample':[1.0],
'gradientboostingregressor__criterion':['friedman_mse', 'squared_error'],
# 'gradientboostingregressor__min_samples_split':[2],
# 'gradientboostingregressor__min_samples_leaf':[1],
# 'gradientboostingregressor__min_weight_fraction_leaf':[0.0],
# 'gradientboostingregressor__max_depth':[3],
# 'gradientboostingregressor__min_impurity_decrease':[0.0],
# 'gradientboostingregressor__init':[None],
# 'gradientboostingregressor__random_state':[None],
# 'gradientboostingregressor__max_features':[None],
# 'gradientboostingregressor__alpha':[0.9],
# 'gradientboostingregressor__max_leaf_nodes':[None],
# 'gradientboostingregressor__warm_start':[False],
# 'gradientboostingregressor__validation_fraction':[0.1],
# 'gradientboostingregressor__n_iter_no_change':[None],
# 'gradientboostingregressor__tol':[0.0001],
# 'gradientboostingregressor__ccp_alpha':[0.0]
},
return_train_score=True)
regressor.fit(X, y); joblib.dump(regressor, 'regressor.joblib')
regressor = joblib.load('regressor.joblib')
# Evaluation
train_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('train_score') , regressor.cv_results_.items())))
train_scores = train_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=train_scores[0].to_dict())
train_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('train_score', column.replace('_train_score', '')), train_scores.columns))
test_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('test_score') , regressor.cv_results_.items())))
test_scores = test_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=test_scores[0].to_dict())
test_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('test_score', column.replace('_test_score', '')), test_scores.columns))
time_scores = pd.DataFrame(list(filter(lambda score: score[0].endswith('time') , regressor.cv_results_.items())))
time_scores = time_scores[1].apply(lambda x: pd.Series(x)).T.rename(columns=time_scores[0].to_dict())
time_scores.columns = pd.MultiIndex.from_tuples(map(lambda column: ('time', column.replace('_time', '')), time_scores.columns))
scores = pd.concat([train_scores, test_scores, time_scores], axis=1)
scores.index = pd.MultiIndex.from_frame(pd.DataFrame(regressor.cv_results_['params']))
scores.sort_values(('test_score', 'rank'))
Bagging Ensemble
Overview
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
# classification
X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
classifier = ensemble.BaggingClassifier(estimator=tree.DecisionTreeClassifier())
classifier.fit(X, y)
classifier.predict(X)
classifier.predict_proba(X)
# regression
X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
regressor = ensemble.BaggingRegressor(estimator=tree.DecisionTreeRegressor())
regressor.fit(X, y)
regressor.predict(X)
Task: Classification
Validation: BaggingClassifier
더보기
#
Task: Regression
Validation: BaggingRegressor
더보기
#
Voting Ensemble
Task: Classification
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
#X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
estimators = [('Base1', tree.DecisionTreeClassifier()),
('Base2', ensemble.RandomForestClassifier()),
('Base3', discriminant_analysis.LinearDiscriminantAnalysis())]
classifier = ensemble.VotingClassifier(estimators=estimators, voting='soft', weights=[2,1,1])
classifier.fit(X, y)
classifier.predict(X)
classifier.predict_proba(X)
Validation: VotingClassifier
더보기
#
Task: Regression
Overview
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
#X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
estimators = [('Base1', tree.DecisionTreeRegressor()),
('Base2', ensemble.RandomForestRegressor()),
('Base3', svm.SVR(kernel='rbf', max_iter=-1))]
regressor = ensemble.VotingRegressor(estimators=estimators, weights=[2,1,1])
regressor.fit(X, y)
regressor.predict(X)
Validation: VotingRegressor
더보기
#
Stacking Ensemble
Task: Classification
Overview
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
#X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
estimators = [('Base1', tree.DecisionTreeClassifier()),
('Base2', ensemble.RandomForestClassifier()),
('Base3', discriminant_analysis.LinearDiscriminantAnalysis())]
meta_classifier = svm.SVC(kernel='poly', probability=True, max_iter=-1)
classifier = ensemble.StackingClassifier(estimators=estimators, final_estimator=meta_classifier)
classifier.fit(X, y)
classifier.predict(X)
classifier.predict_proba(X)
import pandas as pd
from sklearn.datasets import make_classification, make_regression
from sklearn.preprocessing import Binarizer, KBinsDiscretizer, OrdinalEncoder, LabelBinarizer, LabelEncoder, OneHotEncoder
from sklearn.preprocessing import FunctionTransformer, PowerTransformer, QuantileTransformer, StandardScaler, Normalizer, RobustScaler, MinMaxScaler, MaxAbsScaler
from sklearn.decomposition import PCA, FactorAnalysis
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
from sklearn.pipeline import FeatureUnion, make_union, Pipeline, make_pipeline
from sklearn.model_selection import cross_validate, RepeatedStratifiedKFold
X, y = make_classification(n_samples=3000, n_features=10, n_classes=2, weights=[0.6, 0.4], flip_y=0, random_state=None)
estimators = [('BernoulliNB', make_pipeline(StandardScaler(), Binarizer(), naive_bayes.BernoulliNB())),
('MultinomialNB', make_pipeline(PowerTransformer(method='yeo-johnson', standardize=True), KBinsDiscretizer(n_bins=[3]*X.shape[1], encode='ordinal'), OneHotEncoder(min_frequency=10, max_categories=5, drop='if_binary', sparse_output=False), naive_bayes.MultinomialNB())),
('GaussianNB', make_pipeline(QuantileTransformer(output_distribution='normal'), PCA(n_components=None), naive_bayes.GaussianNB())),
('LinearDiscriminantAnalysis', make_pipeline(QuantileTransformer(output_distribution='normal'), discriminant_analysis.LinearDiscriminantAnalysis())),
]
meta_classifier = svm.SVC(kernel='rbf', probability=True, max_iter=-1)
classifier = ensemble.StackingClassifier(estimators=estimators, final_estimator=meta_classifier)
classifier.fit(X, y)
cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=None) # StratifiedKFold(n_splits=5, shuffle=False, random_state=None) # cross validation & randomness control
scores = pd.DataFrame(cross_validate(classifier, X, y, cv=cv, scoring=['accuracy', 'recall', 'precision', 'f1'], return_train_score=True)).mean()
scores
Validation: StackingClassifier
더보기
#
Task: Regression
Overview
from sklearn.datasets import make_classification, make_regression
from sklearn import linear_model, ensemble, naive_bayes, tree, neighbors, discriminant_analysis, svm, neural_network
#X, y = make_classification(n_samples=3000, n_features=10, n_classes=3, n_clusters_per_class=1, weights=[.6, .3, .1], flip_y=0)
X, y = make_regression(n_samples=3000, n_features=10, n_informative=5, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
estimators = [('Base1', tree.DecisionTreeRegressor()),
('Base2', ensemble.RandomForestRegressor()),
('Base3', svm.SVR(kernel='rbf', max_iter=-1))]
meta_regressor = linear_model.LinearRegression()
regressor = ensemble.StackingRegressor(estimators=estimators, final_estimator=meta_regressor)
regressor.fit(X, y)
regressor.predict(X)
Validation: StackingRegressor
더보기
#
Reference
'artificial intelligence > machine learning' 카테고리의 다른 글
SVM Model (0) | 2023.05.09 |
---|---|
K-Nearest and Radius Neighbor Model (0) | 2023.05.09 |
Decision Tree, Random Forest and Extra Tree (0) | 2023.05.09 |
Naive Bayes Classifier and Discriminant Model (0) | 2023.05.09 |
Linear Model (0) | 2023.05.09 |